China Professional SS316 Ss314 Stainless Steel Hollow Pin Chain for Conveyor Parts

Product Description

SS316 SS314 Stainless Steel Hollow Pin Chain For Conveyor Parts
Our Stainless Steel Hollow Pin Chain are very competitive.
If you need plastic conveyor chain, stainless steel mesh belt, we can asseble mesh belt together with stainless steel chain for you. If you don’t know which material is better, we can inform you if you tell us where it is used. Our engineer are powerful and can help you to solve all problems you meet. Most famous chain factories in Europe. Japan are placing big order of stainless steel chain from us. You know, our chain are of high quality and competitive price.

Stainless Steel Hollow Pin Chains and Attachments
– Short Pitch Stainless Steel Hollow Pin Chains: 08BHPSS – 12BHPSS, 40HPSS – 80HPSS
– Double Pitch Stainless Steel Hollow Pin Chains: C2040HPSS – C2082HPSS
– Large Pitch Stainless Steel Hollow Pin Chains: MC, EC, ZC, FVH Series
– Large Pitch Stainless Steel CHINAMFG Pin Conveyor Chain: ISO, BS, DIN or JIS
– ANSI Stainless Steel Side Bow Chains: 08BSBSS – 12BSBSS; 35SBSS – 80SBSS
– ANSI Adapted Stainless Steel Chains: 40SS Sticker, 40SS CHINAMFG
– ANSI Engineering Plastic Chains: 40PC – 60PC
– ANSI Poly Stainless Steel Chains: 25PS – 60PS

Material Stainless steel, alloy steel
Process Assembled
Heat treatment Case hardening, Meshbeltfurnace quenching heat treatment
Surface treatment Blacking, galvanization, chroming, electrophoresis, color painting, or customer requirement
Performance High precision, high wear resistance, low noise, smooth and steady, high strength
Model number Standard or nonstandard (single duplex and triple)                                 35-1, 40-1, 50-1, 60-1, 80-1, 100-1, 120-1, 140-1,160-1,200-1,240-1
35-2, 40-2, 50-2, 60-2, 80-2, 100-2, 120-2, 140-2, 160-2, 200-2, 240-2
06B-1,08B-1,10B-1,12B-1,16B-1,20B-1,24B-1,28B-1,32B-1,40B-1,48B-1,56B-1,64B-1,72B-1 
06b-2,08B-2,10B-2,12B-2,16B-2,20B-2,24B-2,28B-2,32B-2,40B-2,48B-2,56B-2,64B-2,72B-2
Packaging Inner plastic bag and outer carton box or customer requirement.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Transportation Chain
Material: Stainless steel
Surface Treatment: No
Feature: Fire Resistant
Chain Size: 1/2"*3/32"
Structure: Roller Chain
Samples:
US$ 60/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

conveyor

How do you calculate the chain pull force in a conveyor chain system?

The chain pull force, also known as the chain tension, is an important parameter to determine in a conveyor chain system. It represents the force required to move the conveyed load along the conveyor. The calculation of chain pull force involves several factors:

1. Weight of the Load: Determine the weight of the load being conveyed. This includes the weight of the product, packaging materials, and any additional equipment or components carried by the conveyor.

2. Friction Coefficients: Identify the friction coefficients between the load and the conveyor components. This includes the friction between the product and the conveyor chain, as well as the friction between the product and the conveyor bed or guides. These coefficients are typically provided by the manufacturer or can be obtained through testing.

3. Incline or Decline Angle: Consider the angle at which the conveyor operates. If the conveyor has an incline or decline, the angle will affect the force required to move the load.

4. Acceleration and Deceleration: Account for any acceleration or deceleration requirements in the conveyor system. If the conveyor needs to start or stop abruptly or if there are changes in speed, these factors will impact the chain pull force.

Once these factors are determined, the chain pull force can be calculated using the following formula:

Chain Pull Force = (Weight of Load + Friction Force) × (1 + Incline or Decline Factor) × (1 + Acceleration or Deceleration Factor)

It’s important to note that the accuracy of the calculation depends on the accuracy of the input values. Therefore, it’s recommended to consult the conveyor manufacturer or an engineering professional to ensure precise calculations and proper sizing of the conveyor chain.

conveyor

What are the future trends and advancements in conveyor chain technology?

The field of conveyor chain technology is constantly evolving, driven by the need for improved efficiency, productivity, and sustainability. Here are some of the future trends and advancements in conveyor chain technology:

1. Automation and robotics: The integration of conveyor chains with automation and robotics systems is a growing trend. This includes the use of advanced sensors, machine vision, and artificial intelligence to enable autonomous operation, precise positioning, and efficient material handling.

2. Smart and connected systems: Conveyor chains are becoming increasingly connected through the Internet of Things (IoT) technology. This allows for real-time monitoring, data collection, and analysis of various performance parameters such as chain wear, tension, temperature, and energy consumption. Smart systems can optimize maintenance schedules, detect potential failures, and improve overall system efficiency.

3. Lightweight and high-strength materials: The development of lightweight yet high-strength materials is an ongoing focus in conveyor chain technology. Advanced alloys, composites, and engineered plastics offer improved strength-to-weight ratios, reducing energy consumption and increasing the load capacity of conveyor systems.

4. Energy efficiency: Energy efficiency is a key consideration in conveyor chain design. Future advancements aim to minimize power consumption through the use of efficient drive systems, regenerative braking, and smart control algorithms that optimize speed and acceleration profiles. Energy recovery technologies, such as regenerative drives, can also capture and reuse energy during deceleration or braking.

5. Sustainability and environmental friendliness: Conveyor chain technology is moving towards more sustainable and environmentally friendly solutions. This includes the use of eco-friendly materials, improved lubrication techniques to minimize environmental impact, and the adoption of energy-efficient components and systems. Recycling and circular economy concepts are also gaining prominence in the design and manufacturing of conveyor chains.

6. Advanced wear monitoring and predictive maintenance: The future of conveyor chain technology involves advanced wear monitoring systems that can accurately predict the remaining useful life of chains and components. This enables proactive maintenance planning and reduces unplanned downtime. Predictive maintenance algorithms analyze data collected from sensors and provide timely alerts for chain replacement or repair.

These are just a few examples of the future trends and advancements in conveyor chain technology. As technology continues to advance, we can expect further innovations that enhance performance, efficiency, reliability, and sustainability in conveyor systems.

conveyor

What is the load capacity of a conveyor chain?

The load capacity of a conveyor chain depends on various factors, including the chain design, material, size, and the operating conditions. It is crucial to consider the specific application requirements when determining the load capacity of a conveyor chain. Here are some key factors to consider:

  • Chain Design: Different types of conveyor chains have varying load capacities. The chain design includes factors such as the type of links, their configuration, and the presence of attachments or rollers.
  • Material: The material used to manufacture the conveyor chain significantly affects its load capacity. Common materials include steel, stainless steel, and plastic. Steel chains are generally more robust and have higher load-bearing capabilities.
  • Chain Size: The size of the conveyor chain, including the pitch and width, plays a role in determining its load capacity. Larger chains with wider links tend to have higher load capacities.
  • Operating Conditions: Factors such as the speed of the conveyor, the type and weight of the transported materials, and the environmental conditions (temperature, humidity, etc.) can impact the load capacity of the chain.
  • Manufacturer Specifications: It is essential to consult the manufacturer’s specifications and guidelines for the specific conveyor chain being used. Manufacturers typically provide load capacity charts or tables based on their chain designs.

The load capacity of a conveyor chain is typically specified in terms of its maximum allowable working load or breaking strength. These values are determined through rigorous testing and engineering calculations. To ensure safe and efficient operation, it is important to select a conveyor chain that has a load capacity suitable for the intended application. Exceeding the recommended load capacity can lead to premature wear, chain failure, and potential safety hazards.

China Professional SS316 Ss314 Stainless Steel Hollow Pin Chain for Conveyor Parts  China Professional SS316 Ss314 Stainless Steel Hollow Pin Chain for Conveyor Parts
editor by CX 2024-05-09